

Implementation plan

Compiler

for the JiPi programming language

TDP006

Jimmy Dahl

IP1

2008-02-07

Linköpings Universitet Jimmy Dahl

 2008-02-07

Compiler

To translate code written in the JiPi programming language to the Ruby programming language there

will be a compiler. A compiler is a program that translates a predefined language to another

language, often a language that a computer will understand.

To do this the compiler finds keywords in the specified programming language and generates code

for it. This process is split in several parts. The first part is the lexical analyzer that splits the input

code into tokens. This part will also count the lines of the code to enable better error codes.

 The second part is the parser. The parser is the process of analyzing the sequences of tokens from

the lexical analyzer to determine its grammatical structure with respect to a given grammar. The

parser will construct a parse-tree which will be transformed to Ruby source code by an evaluator.

Lexical analyzer

The lexical analyzer shall discover and report all keywords, operators, punctuations and identifiers. It

shall also discover and report syntactically faulty tokens, but it won’t discover syntactically structural

faults, like the expression a = b +. The lexical analyzer will also remove white spaces like spaces,

line-feeds and tabs.

Parser

The parser is to discover the syntactical structure of the code. It will get the tokens from the lexical

analyzer and build a syntax tree from it. The syntax tree is a treelike representation of the structure

of the program. The “branches” of the tree describes how the structures of the program are linked

together. When if and for statements start and end, and which blocks are kept within.

The parser will also check for syntactically structural faults and throw error codes when encountered.

Semantic faults, like the a = (b == c) expression, will not be captured here.

Symbol tables

To make it possible to find keywords in the lexical analyzer and build the parse tree in the parser they

will have access to two tables of symbols. The first table will contain all the languages keywords and

operators and will be used to find the important tokens that the parser will need. The second table

will contain all symbols, like variables and function symbols, used in the program that’s being

compiled. The parse tree tells how these symbols belong together, and together they will form the

complete program structure. For symbol tables the compiler will use hashes.

Semantic checker

When the parsing is done the code will be checked for semantic faults. During this process the

compiler will check that all operators has the right amount of operands, that the expressions are

complete and that the statements are complete and has an end point.

Linköpings Universitet Jimmy Dahl

 2008-02-07

Evaluator

When all other processes are finished the code is ready to be translated to Ruby. The evaluator will

use the symbols table and the parse tree to build a complete ruby source code file.

Implementation

To get all these things working I will implement small bites separately, try to make every minor part

working well first and then try to make them work together.

Firstly I will implement the numerical part of the language, building a simple calculator compiler only

accepting numerical expressions and without functions and control structures. Then I will implement

the same thing for string manipulation.

When both work fine I will firstly extend them with control structures and then put them together to

one compiler handling both numbers and strings. Then there’s just to implement the function

definition and the compiler is complete.

The building of every new compiler part will also be divided in several parts to simplify the

development. I will try to make the lexical analyzer, parser, semantics checker and evaluator to work

separately.

