
JiPi Language Specification

Abstract

This document describes the syntax, semantics, and design of the JiPi programming language.

Authors

Jimmy Dahl

Navigation

To navigate within this document, use the Contents page links or just scroll down.

2

Contents

1. Introduction 4

 1.1 Getting started

2. Lexical structure 5

 2.1 Programs

 2.2 Escape sequences

 2.3 Keywords

 2.4 Operators

3. Basic concepts 6

 3.1 Writing code

 3.2 Save program

 3.3 Compile program

 3.4 Run program

4. Types 7

 4.1 Value types

 4.2 Reference types

5. Variables 8

6. Conversion 9

7. Expressions 10

 7.1 Operators

 7.2 Arithmetic operators

 7.3 Logical operators

 7.4 Assignment operators

 7.5 Boolean expressions and comparing operators

8. Statements 11

 8.1 End point

 8.2 Expression statements

 8.3 Selection statements

 8.4 Iteration statements

9. Lists 12

 9.1 Creating lists

 9.2 Add element to list

 9.3 Accessing elements

10. Functions 13

 10.1 Predefined functions

 10.1.1 Append

 10.1.2 Length

 10.1.3 Write

 10.1.4 Read

 10.1.5 Open

 10.1.6 string_to_int

 10.1.7 int_to_string

 10.1.8 float_to_int

 10.2 Define a function

 10.3 Call a function

11. Namespaces 15

3

12. Grammar 16

 12.1 Expressions

 12.1.1 Arithmetic expressions

 12.1.2 Logical expressions

 12.1.3 Assignment expressions

 12.1.4 Boolean expression

 12.2 Statements

 12.2.1 Selection statements

 12.2.2 Iteration statements

 12.3 Lists

 12.3.1 Create a list

 12.3.2 Append element

 12.3.3 Access elements

 12.4 Functions

 12.4.1 Define a function

 12.4.2 Call a function

4

1. Introduction

JiPi is a simple and modern high-level programming language. It will be fairly familiar to Python
programmers, even though it is much simpler.

Because of it’s simple grammar that pretty much looks like talked English, the JiPi programming language
makes it easy for everyone to write short and simple scripts in no time. The syntax is inspired by the most
common high-level scripting languages in the world which makes it easy for a experienced programmer to
start writing code in JiPi.

The JiPi compiler makes it easy to develop and use programs written in the JiPi programming language
and because of it’s intuitive and common appearance it’s easy for both the new and the experienced
programmer to execute their programs. The compiler translates the JiPi source code to Ruby source
code. Ruby is a well spread and commonly used programming language and it’s interpreter is preinstalled
in several linux distributions.

The rest of this chapter gets you started, while later chapters describe rules and exceptions of the
language. The intent with the “Getting started” chapter is to provide the reader with an introduction to the
language that will facilitate the writing of early programs and the reading of later chapters.

1.1 Getting started

The canonical "hello, world" program can be written as follows:

write(“hello, world”)

The source code for a JiPi program is typically stored in one or more text files with a file extension of .jp as
in hello.jp

Using the command-line compiler provided with JiPi, such a program can be translated to Ruby by starting
the compiler and follow its instructions.

5

2. Lexical structure

This chapter describes the lexical structure of the JiPi programming language. If you want to read about
the JiPi grammar please read chapter 12.

2.1 Programs

A JiPi program consists of one or more source files. A source file is an ordered sequence of Unicode

characters and can be written with a text editor.

2.2 Escape sequences

At this moment JiPi only has one unicode character escape sequences and that one is to enable new line
in a string. This could be needed when writing to a file.

The escape sequences starts with a backslash followed by a letter. The escape sequence for a new line is
\n

2.3 Keywords

All predefined functions, operators and some other identifiers are keywords in JiPi. These words can not
be used to anything else. Except for the operators (see 2.4) and the predefined functions (see 10.1) these
are the keywords:

if, elseif, else, for, and function.

2.4 Operators

These are the operators in JiPi:

+ The arithmetic addition operator.
- The arithmetic subtraction operator.
* The arithmetic multiplication operator.
/ The arithmetic division operator.
= The assignment operator.
> The “bigger then” operator.
< The “less then” operator.
>= The “bigger or same as” operator
<= The “less or same as” operator
== The “equal” operator
return The return operator that returns variables from a function.

6

3. Basic concepts

This chapter defines basic concepts that are required for understanding subsequent chapters.

3.1 Writing code

The JiPi programming language does not ship with any development environment. All you need to write
source code is a regular text editor.

3.2 Save program

To save your source code for later use you save it as an ordinary file with any name and the filename
extension .jip. The .jip extension tells that the file is a JiPi source code file and is not necessary for the file
to compile. The compiler will try to compile every file you give it, no matter what filename extension you
use.

3.3 Compile program

Before you’ll be able to run the source code you have to compile it. You compile the source code using
the JiPi compiler which translates the JiPi source code to Ruby source code.

3.4 Run program

When the source code is written, saved and compiled you can run it as a usual Ruby program with the
Ruby interpreter.

7

4. Types
JiPi supports two kinds of types: value types and reference types. Value types differ from reference types
in that variables of the value types directly contain their data, whereas variables of the reference types
store references to objects.

4.1 Value types

JiPi uses different data types for different data when it’s stored in a variable. The programmer does not
define what type a variable is and does not have to care to much about it. The predefined value types
include integers, floats, and the types bool and string. Booleans can either be true or false. Strings are
sequences of characters.

All value types are declared automatically when they are first used.

The only difference between these types that the programmer needs to know about is that they support
different operations. Read more about the operators and what types they work on in chapter 7.

4.2 Reference types

The only predefined reference type is list. A list is a data structure that contains zero or more variables.
The variables contained in a list, also called the elements of the list, can be of any other type. Every
element in a list is a reference to another object, that’s why it’s called a reference type.

The list type is, just like the value types automatically declared when first used. To separate a list from
a value type brackets are used before and after the list elements. Read more about this in chapter 7
where you can read about the assignment operator and how it works for lists.

The list is indexed by number and the first elements position is 0.

8

5. Variables

Variables represent storage locations. Every variable has a type that’s being set automatically when the
variable gets assigned a value. The value, and type, of a variable can be changed through assignment.

There are two kinds of variables, local and global. This is decided by what namespace they’re in. Read
more about this in chapter 11.

9

6. Conversions

Sometimes you want to convert numbers to letters and letters to numbers. For this need JiPi has some
predefined conversion functions. For every possible conversion there’s a function to call with the value
you want to change as an argument.

The possible conversions are from string to integer, from integer to string and from float to integer.
Conversion between integers and floats are done automatically when needed. If you do a calculation with
both integers and floats the integers will be converted to floats. The functions names are
string_to_int(…), int_to_string(…) and float_to_int(…) and can be called from
anywhere in the program.

10

7. Expressions

An expression is a sequence of operators and operands. This chapter defines the syntax, order of
evaluation of operands and operators, and meaning of expressions.

7.1 Operators

Expressions are constructed from operands and operators. The operators of an expression indicate which
operations to apply to the operands. The order of evaluation of operators in an expression is determined
by the precedence and associativity of the operators. Operands in an expression are evaluated from left to
right if the operators precedence doesn’t tell otherwise.

7.2 Arithmetic operators

The *, /, +, and – operators are called the arithmetic operators. The * operator does multiplication, the
/ operator does division, the + operator does addition and the – operator does subtraction.

The order of evaluating arithmetical operators is determined by the precedence of the operators which in
JiPi follow the usual rules for mathematical operations.

To use the arithmetical operators you just put them between operands of a type that supports the
operation. Every numerical data type supports all arithmetical operations.

You may also use the addition operator to add strings to each other. This is done in the same way, put the
addition operator between two strings.

7.3 Logical operators

There are two logical operators, the and and the or. These are to be used in Boolean expressions. A
Boolean expression with the and operator evaluates true if and only if both operands are true else it’s
false. The or operator evaluates true if at least one of them are true, else it is false.

7.4 Assignment operators

In JiPi there’s only one assignment operator, the = operator. Whatever type of value you want to assign to
a variable you use this operator between the variable name and the value.

7.5 Boolean expressions and comparing operators

A boolean-expression is an expression that yields a result of type bool. The controlling conditional
expression of an if statement or for statement is a boolean expression. Boolean expressions are built
on operands and the comparing operators >, <, >=, <= and ==.

11

8. Statements

Your programs will be formed by one or more statements and every statement will consist of expressions.
In JiPi there are 3 types of statements, expression, selection and iteration statements.

A statement may also embed other statements.

8.1 End point

Every statement, but the expression statements, has an end point. In intuitive terms, the end point of a
statement is the location that immediately follows the statement. The execution rules for composite
statements (statements that contain embedded statements) specify the action that is taken when control
reaches the end point of an embedded statement. For example, when control reaches the end point of a
statement in a block, control is transferred to the next statement in the block.

End points is in JiPi marked with the keyword end. Whenever the compiler comes to an end declaration
the current statement is ended.

8.2 Expression statements

An expression-statement evaluates a given expression. The most common is the assignment of a value to
a variable.

8.3 Selection statements

Selection statements select one of a number of possible statements for execution based on the value of
some expression. In JiPi the only selection statements are the if statements.

The if statement selects a statement for execution based on the value of a Boolean expression.
Associated with the if statement you may use the elseif and else statements.

The elseif statement does the same thing as the if statement, but only if the preceding if statement
did not evaluate. The else statement is only selected when neither preceding if or elseif hasn't been
evaluated.

8.4 Iteration statements

Iteration statements repeatedly execute an embedded statement. The one iteration statement in JiPi is the
for statement.

The for statement loops through every element in a list. It takes a list of elements and, starting with the
first element and stepping one element forward for every loop, gives the value of the element to a variable
and run all statements inside the for statement. The variable with the elements value makes it possible to
use all elements in the list in the statements embedded in the for statement. This makes the for
statement ideal for tasks like printing all elements in a list, move them to another list or maybe sum them
together.

12

9. Lists

As mentioned in chapter 4 JiPi has a reference data type called lists. JiPi lists works as arrays does in
other languages. A list is a data structure that contains references to a number of variables. The list is
indexed by number and the first elements position is 0.

9.1 Creating lists

To create a list you assign a group of elements, separated with commas, to a variable using a bracket
before and after the group of elements like this:

variable = [element1, element2]

You may also create an empty list by passing the variable a list with a starting and an ending bracket
with no elements in between.

9.2 Add element to lists

If you want to add an element to an existing list you use the predefined append function. The append
function takes two arguments, the list and the new element, and adds the new element at the end of the
list.

9.3 Accessing elements

To access an element in a list you use the elements indexed position and surround it with brackets. To
get the first element in a list you call the lists variable name with the number 0 inside the brackets like
this:

first = listname[0]

If you want to access all elements in a list the easiest way is to loop through it with the for statement.

13

10. Functions

JiPi ships with a bunch of predefined functions to makes coding easier for the programmer. But these
functions barely covers the most basic needs for writing programs. In addition to the predefined functions
programmers have the ability to define their own functions. This is a quite easy process and can simplify
and shorten the source code.

10.1 Predefined functions

The predefined functions are: length, append, write, read, open, string_to_int, int_to_string, float_to_int

10.1.1 Append

The predefined append(…) function adds an element at the end of an existing list. The function takes
to arguments, the existing list and the new element. This example explains it:

variable1 = “hello”
variable2 = [“I”, “said”]
variable3 = append(variable2, variable1)

10.1.2 Length

The length(…) function works for both strings and lists and returns the number of letters if you give it a
string and the number of elements if you give it a list. The function takes the string or list as
argument.

10.1.3 Write

The write(…) function takes a string as argument and writes it to either the terminal where the
program runs or to a file, if a file is open.

10.1.4 Read

The read(…) function is the one predefined function that doesn’t take any argument. Instead you just
call it with empty parentheses. The read function reads a line either from the terminal where the program
runs or from a file, if a file is open.

10.1.5 Open

The open(…) function opens file so that the read and write functions can write to or read from it. The
open function takes the path to the file as argument. Whenever a file is open the read and write
functions only work on the opened file.

10.1.6 string_to_int

This function transforms a string that only contains numbers to an int.

14

10.1.7 int_to_string

This function transforms an int into a string.

10.1.8 float_to_int

This function rounds a float to the closest integer.

10.2 Define a function

To define your own function you need to give it a name. The function definition starts with a line with the
keyword function followed by the functions name and the possible arguments inside parentheses. If the
function doesn’t take any arguments you just leave the space between the parentheses blank.

After the definition-line you are free to put whatever statements you want. At the end of the function you
have to put the end declaration that tells the compiler that the function has ended.

To return anything to the statement calling the function you use the return operator.

10.3 Call a function

To call a function you simply type its name followed by the arguments you wish to pass (and the function
needs) inside parentheses.

15

11. Namespaces

JiPi uses the usual namespaces approach. There can only be one identifier for a name in the same
namespace. In practice this means there can’t be two different variables with the same name in the same
namespace.

Because of the simple language layout and the thought of the whole language as a language for quit small
programs the JiPi programming language only uses two levels of namespaces. The first and most
important is the global one. This namespace includes all identifiers declared outside a function. These
identifiers are reachable from everywhere in the program.

The other namespace level is the one for identifiers declared inside a function. Every function has its own
namespace. Variables declared inside a function can only be reached from inside this function. Calls from
outside a function can’t reach identifiers inside the function. But when you call for a identifier name inside
a function that isn’t declared inside the function this will check for this identifier in the global namespace .

This means the global namespace can be reached from anywhere in the program, regardless of which
namespace the call comes from.

16

12. Grammar

The idea of this chapter is to show the languages grammar with some well chosen examples. It contains
examples of every thought way of using expressions, statements and functions.

12.1 Expressions

Expressions are built of to operands and an arithmetic operators.

12.1.1 Arithmetic expressions

a + 5

b – a
a + b – c * d / 7

12.1.2 Logical expressions

a or b
a and c or b

12.1.3 Assignment expressions

a = 5
b = a + 4

c = “Hello”

12.1.4 Boolean expressions

b > a
a <= c
d == 5

12.2 Statements

Statements are built of expressions, read about the expressions grammar above.

12.2.1 Selection statements

if a = b

 write “same”
elseif a > b

 write “bigger”
else

 write “smaller”
end

17

12.2.2 Iteration statements

a = [1, 2, 3]
for element in a

 write “loop: “
 write element
end

12.3 Lists

12.3.1 Create a list

a = [1, 2, 3]

12.3.2 Append element

b = append(a, 4)

12.3.3 Access elements

for element in b
 a = a + element
end

12.4 Functions

12.4.1 Define a function

function test(argument)
 variable = argument * 5
 return variable
end

12.4.2 Call a function

new = test(5)

